Advanced Math 6-5

(Day 2)
DeMoivre's Theorem

DeMoivre's Theorem :
if z is a complex number and n is a positive integer, then

$$
z^{\mathrm{n}}=r^{\mathrm{n}}\left[\cos (\mathrm{n} \theta)^{\boldsymbol{r}} i \sin (\mathrm{n} \theta)\right]
$$

power of
modulus power times the argument
*1) $(3-7 i)^{5=}(\sqrt{58}) \frac{5}{5}\left[\cos \left(-334.007^{\circ}\right)+i \sin \left(-334.007^{\circ}\right)\right]$
modulus $=\sqrt{3^{2}+(-7)^{2}}=\sqrt{58}$
Multiply by the power,
argument $=\tan ^{-1}\left(\frac{-7}{3}\right)=-66.801^{\circ}$
$-\forall$

nth Roots of Complex Numbers :

For a positive integer n, the complex number $z=r(\cos \theta+i \sin \theta)$ has exactly n distinct roots given by

$$
\sqrt[n]{r}\left(\cos \frac{\theta+2 \pi k}{n}+i \sin \frac{\theta+2 \pi k}{n}\right)
$$

where $k=0,1,2, \ldots, n-1$

I never really use this formula. I know that there will be the same number of roots as the index. I divide the angle found with $\arctan ()$ by the index. Then I add $360^{\circ} / n$ (index) and keep adding this angle until all the roots are found. (See next slide.)

Find the following root:
*2) $\sqrt[6]{3-7 i}$
$\bmod : \sqrt{58}$
$\theta=-66.801^{\circ}$

root 1$) \sqrt[4]{\sqrt{58}}\left(\cos \left(-44.8^{\circ}\right)+i \sin \left(-66.8^{\circ}\right)\right)=$
2) $\sqrt[8]{58}\left(\cos 23.2^{\circ}+i \sin 23.2^{\circ}\right)=-1.59+477_{i}$
$4^{4 h}$ root, separated
by 90°
$360^{\circ} \%=90^{\circ}$
3) $\sqrt[8]{58\left(\cos 113.2^{\circ}+i \sin 113.2^{\circ}\right)=-.47-1.59 i}+\begin{gathered}+90^{\circ} \\ +90^{\circ}\end{gathered}$

I know that here will be the same number of roots as the index. I divide the angle found with $\arctan ()$ by the index. Then I add $360^{\circ} / n$ (index) and keep adding this angle until all the roots are found.

$$
\sqrt[4]{\sqrt{58}}=\left(58^{\frac{1}{2}}\right)^{\frac{1}{4}}=58^{\frac{1}{8}}=\sqrt[8]{58}
$$

Assignment:
 pg. 563 70-80 even, 89-100 all.

